The Effect Of Maternal Antibodies On Anti-Viral Immunity In Infant Mice

Loading...
Thumbnail Image

Degree type

Doctor of Philosophy (PhD)

Graduate group

Cell & Molecular Biology

Discipline

Subject

Flavivirus
Infants
Influenza
Maternal antibodies
mRNA vaccine
Allergy and Immunology
Immunology and Infectious Disease
Medical Immunology
Virology

Funder

Grant number

License

Copyright date

2019-08-27T20:19:00-07:00

Distributor

Related resources

Contributor

Abstract

Infants are particularly vulnerable to infection and severe disease, yet we lack effective vaccines for this population. While maternal antibodies can provide protection, they also inhibit the infant’s de novo antibody response. Furthermore, maternal antibodies can exacerbate disease in some contexts. Thus we need better vaccination strategies to protect infants. Here, we establish mouse models of influenza virus- and flavivirus-specific maternal antibody transfer. We show that influenza virus-specific maternal antibodies protect infant mice from influenza disease and that Zika virus-specific maternal antibodies protect infants from Zika virus-mediated disease. Dengue virus-specific maternal antibodies neither protect from nor exacerbate disease during Zika virus infection of infant mice. We further demonstrate that influenza virus-specific maternal antibodies inhibit infants’ responses to conventional influenza vaccines. To solve this problem, we show that a novel vaccine, nucleoside-modified mRNA encapsulated in lipid nanoparticles (mRNA-LNP) encoding influenza hemagglutinin, overcomes maternal antibody inhibition by prolonged establishment of germinal centers. mRNA-LNP vaccination offers a promising means of eliciting protective immune responses in infants in the presence of maternal antibodies. These results have important implications for the design of vaccines for use in mothers and infants.

Date of degree

2019-01-01

Date Range for Data Collection (Start Date)

Date Range for Data Collection (End Date)

Digital Object Identifier

Series name and number

Volume number

Issue number

Publisher

Publisher DOI

relationships.isJournalIssueOf

Comments

Recommended citation