Typing Untyped Lambda-Terms, or Reducibility Strikes Again!

Loading...
Thumbnail Image

Degree type

Discipline

Subject

GRASP

Funder

Grant number

License

Copyright date

Distributor

Related resources

Contributor

Abstract

It was observed by Curry that when (untyped) λ-terms can be assigned types, for example, simple types, these terms have nice properties (for example, they are strongly normalizing). Coppo, Dezani, and Veneri, introduced type systems using conjunctive types, and showed that several important classes of (untyped) terms can be characterized according to the shape of the types that can be assigned to these terms. For example, the strongly normalizable terms, the normalizable terms, and the terms having head-normal forms, can be characterized in some systems D and DΩ. The proofs use variants of the method of reducibility. In this paper, we present a uniform approach for proving several meta-theorems relating properties of λ-terms and their typability in the systems D and DΩ. Our proofs use a new and more modular version of the reducibility method. As an application of our metatheorems, we show how the characterizations obtained by Coppo, Dezani, Veneri, and Pottinger, can be easily rederived. We also characterize the terms that have weak head-normal forms, which appears to be new. We conclude by stating a number of challenging open problems regarding possible generalizations of the realizability method.

Advisor

Date Range for Data Collection (Start Date)

Date Range for Data Collection (End Date)

Digital Object Identifier

Series name and number

Publication date

1994-12-07

Volume number

Issue number

Publisher

Publisher DOI

relationships.isJournalIssueOf

Comments

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-94-59.

Recommended citation

Collection