Sideways Information Passing for Push-Style Query Processing

Loading...
Thumbnail Image

Related Collections

Degree type

Discipline

Subject

Funder

Grant number

License

Copyright date

Distributor

Related resources

Contributor

Abstract

In many modern data management settings, data is queried from a central node or nodes, but is stored at remote sources. In such a setting it is common to perform "push-style" query processing, using multithreaded pipelined hash joins and bushy query plans to compute parts of the query in parallel; to avoid idling, the CPU can switch between them as delays are encountered. This works well for simple select-project-join queries, but increasingly, Web and integration applications require more complex queries with multiple joins and even nested subqueries. As we demonstrate in this paper, push-style execution of complex queries can be improved substantially via sideways information passing; push-style queries provide many opportunities for information passing that have not been studied in the past literature. We present adaptive information passing, a general runtime decisionmaking technique for reusing intermediate state from one query subresult to prune and reduce computation of other subresults. We develop two alternative schemes for performing adaptive information passing, which we study in several settings under a variety of workloads.

Advisor

Date Range for Data Collection (Start Date)

Date Range for Data Collection (End Date)

Digital Object Identifier

Series name and number

Publication date

2007-11-20

Volume number

Issue number

Publisher

Publisher DOI

relationships.isJournalIssueOf

Comments

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-07-14.

Recommended citation

Collection