Domain Adaptation With Coupled Subspaces

Loading...
Thumbnail Image

Related Collections

Degree type

Discipline

Subject

Computer Sciences
Statistics and Probability

Funder

Grant number

License

Copyright date

Distributor

Related resources

Contributor

Abstract

Domain adaptation algorithms address a key issue in applied machine learning: How can we train a system under a source distribution but achieve high performance under a different target distribution? We tackle this question for divergent distributions where crucial predictive target features may not even have support under the source distribution. In this setting, the key intuition is that that if we can link target-specific features to source features, we can learn effectively using only source labeled data. We formalize this intuition, as well as the assumptions under which such coupled learning is possible. This allows us to give finite sample target error bounds (using only source training data) and an algorithm which performs at the state-of-the-art on two natural language processing adaptation tasks which are characterized by novel target features.

Advisor

Date Range for Data Collection (Start Date)

Date Range for Data Collection (End Date)

Digital Object Identifier

Series name and number

Publication date

2011-01-01

Volume number

Issue number

Publisher

Publisher DOI

Journal Issues

Comments

Recommended citation

Collection