An Alternative Prior Process for Nonparametric Bayesian Clustering

Loading...
Thumbnail Image

Related Collections

Degree type

Discipline

Subject

Computer Sciences
Statistics and Probability

Funder

Grant number

License

Copyright date

Distributor

Related resources

Contributor

Abstract

Prior distributions play a crucial role in Bayesian approaches to clustering. Two commonly-used prior distributions are the Dirichlet and Pitman-Yor processes. In this paper, we investigate the predictive prob- abilities that underlie these processes, and the implicit "rich-get-richer" characteristic of the resulting partitions. We explore an alternative prior for nonparametric Bayesian clustering-the uniform process-for applications where the "rich-get-richer" property is undesirable. We also explore the cost of this process: partitions are no longer exchangeable with respect to the ordering of variables. We present new asymptotic and simulation-based results for the clustering characteristics of the uniform process and compare these with known results for the Dirichlet and Pitman-Yor processes. We compare performance on a real document clustering task, demonstrating the practical advantage of the uniform process despite its lack of exchangeability over orderings.

Advisor

Date of presentation

2010-01-01

Conference name

Statistics Papers

Conference dates

2023-05-17T15:26:32.000

Conference location

Date Range for Data Collection (Start Date)

Date Range for Data Collection (End Date)

Digital Object Identifier

Series name and number

Volume number

Issue number

Publisher

Publisher DOI

relationships.isJournalIssueOf

Comments

Recommended citation

Collection