Possible Néel Orderings of the Kagomé Antiferromagnet

Loading...
Thumbnail Image

Related Collections

Degree type

Discipline

Subject

Physics

Funder

Grant number

License

Copyright date

Distributor

Related resources

Author

Kallin, Catherine
Berlinsky, A. John

Contributor

Abstract

Possible Néel orderings of antiferromagnetically coupled spins on a kagomé lattice are studied using linear-spin-wave theory and high-temperature expansions. Spin-wave analysis, applied to q=0 (three spins per magnetic unit cell) and to √3 × √3 (nine spins per cell) Néel orderings yield identical excitation spectra with twofold-degenerate linear modes and a dispersionless zero-energy mode. This dispersionless mode is equivalent to an excitation localized to an arbitrary hexagon of nearest-neighbor spins. Second- (J2) and third- (J3) neighbor interactions are shown to stabilize the q=0 state for J2>J3 and the √3 × √3 state for J23. A high-temperature expansion of the spin-spin susceptibility χαβ(q) is performed to order 1/T8, for n-component, classical spins with nearest-neighbor interactions only. To order 1/T7 the largest eigenvalue of the susceptibility matrix is found to be independent of wave vector with an eigenvector that corresponds to the dispersionless mode of the ordered phase. This degeneracy is removed at order 1/T8. For n=0, the q=0 mode is favored; for n=1, the band is flat; and, for n>1, the maximum susceptibility is found for a √3 × √3 excitation. Similar results are found for the three-dimensional pyrochlore lattice. The high-temperature expansion is used to interpret experimental data for the uniform susceptibility and powder-neutron-diffraction spectrum for the kagomé-lattice system SrCr8−xGa4+xO19.

Advisor

Date Range for Data Collection (Start Date)

Date Range for Data Collection (End Date)

Digital Object Identifier

Series name and number

Publication date

1992-02-01

Journal title

Physical Review B

Volume number

Issue number

Publisher

Publisher DOI

relationships.isJournalIssueOf

Comments

Recommended citation

Collection