Atomistic Analysis of Phase Segregation Patterning in Binary Thin Films Using Applied Mechanical Fields

Loading...
Thumbnail Image

Related Collections

Degree type

Discipline

Subject

Biochemical and Biomolecular Engineering
Chemical Engineering
Engineering

Funder

Grant number

License

Copyright date

Distributor

Related resources

Contributor

Abstract

The patterned compositional evolution in thin films of a binary alloy controlled by modulated stress fields is studied by employing Monte Carlo simulations. General features of stress-patterned phase segregation are probed using a binary Lennard-Jones potential in which the lattice misfit between the two components of the alloy is varied systematically. In general, patterning of the microstructure is found to be more robust in the low-mismatch binary systems because large lattice mismatch promotes plastic, and therefore, irreversible relaxation, during annealing. It is shown that some control over the relaxation process can be achieved by careful design of the applied thermal annealing history. Additional calculations have been performed using two other potentials for binary metallic systems, an embedded-atom method (EAM) potential for Cu–Ag and a modified embedded-atom method (MEAM) potential for Cu–Ni that represent examples of high and low-mismatched systems, respectively. The results obtained with generic Lennard-Jones potentials are in excellent agreement with those from the EAM and MEAM potentials suggesting that it is possible to derive general guidelines for accomplishing stress-patterned segregation in a variety of thin films of binary alloys.

Advisor

Date Range for Data Collection (Start Date)

Date Range for Data Collection (End Date)

Digital Object Identifier

Series name and number

Publication date

2010-03-02

Journal title

Volume number

Issue number

Publisher

Publisher DOI

relationships.isJournalIssueOf

Comments

Suggested Citation: Nieves, A.M., V. Vitek and T. Sinno. "Atomistic analysis of phase segregation patterning in binary thin films using applied mechanical fields." Journal of Applied Physics. 107, 054303. © 2010 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Journal of Applied Physics and may be found at http://dx.doi.org/10.1063/1.3309480.

Recommended citation

Collection