Generating Sequence of Eye Fixations Using Decision-theoretic Attention Model

Loading...
Thumbnail Image

Degree type

Discipline

Subject

Funder

Grant number

License

Copyright date

Distributor

Related resources

Author

Gu, Erdan
Wang, Jingbin

Contributor

Abstract

Human eyes scan images with serial eye fixations. We proposed a novel attention selectivity model for the automatic generation of eye fixations on 2D static scenes. An activation map was first computed by extracting primary visual features and detecting meaningful objects from the scene. An adaptable retinal filter was applied on this map to generate "Regions of Interest" (ROIs), whose locations corresponded to those of activation peaks and whose sizes were estimated by an iterative adjustment algorithm. The focus of attention was moved serially over the detected ROIs by a decision-theoretic mechanism. The generated sequence of eye fixations was determined from the perceptual benefit function based on perceptual costs and rewards, while the time distribution of different ROIs was estimated by a memory learning and decaying model. Finally, to demonstrate the effectiveness of the proposed attention model, the gaze tracking results of different human subjects and the simulated eye fixation shifting were compared.

Advisor

Date of presentation

2005-06-01

Conference name

Center for Human Modeling and Simulation

Conference dates

2023-05-17T01:08:07.000

Conference location

Date Range for Data Collection (Start Date)

Date Range for Data Collection (End Date)

Digital Object Identifier

Series name and number

Volume number

Issue number

Publisher

Publisher DOI

relationships.isJournalIssueOf

Comments

Copyright 2005 IEEE. Reprinted from 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Volume 3, June 2005, 8 pages. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Recommended citation

Collection