Anisotropic Spin Hamiltonians Due to Spin-Orbit and Coulomb Exchange Interactions

Loading...
Thumbnail Image

Related Collections

Degree type

Discipline

Subject

Physics

Funder

Grant number

License

Copyright date

Distributor

Related resources

Author

Aharony, Amnon
Entin-Wohlman, Ora

Contributor

Abstract

Here we correct, extend, and clarify results concerning the spin Hamiltonian ℋS used to describe the ground manifold of Hubbard models for magnetic insulators in the presence of spin-orbit interactions. Most of our explicit results are for a tetragonal lattice as applied to some of the copper oxide lamellar systems and are obtained within the approximation that ℋS consists of a sum of nearest-neighbor bond Hamiltonians. We consider both a "generic" model in which hopping takes place from one copper ion to another and a "real" model in which holes can hop from a copper ion to an intervening oxygen 2p band. Both models include orbitally dependent direct and exchange Coulomb interactions involving two orbitals. Our analytic results have been confirmed by numerical diagonalizations for two holes occupying any of the 3d states and, if applicable, the oxygen 2p states. An extension of the perturbative scheme used by Moriya is used to obtain analytic results for ℋS up to order t2 (t is the matrix of hopping coefficients) for arbitrary crystal symmetry for both the "generic" and "real" models. With only direct orbitally independent Coulomb interactions, our results reduce to Moriya’s apart from some minor modifications. For the tetragonal case, we show to all orders in t and λ, the spin-orbit coupling constant, that ℋS is isotropic in the absence of Coulomb exchange terms and assuming only nearest-neighbor hopping. In the presence of Coulomb exchange, scaled by K, the anisotropy in ℋS is biaxial and is shown to be of order Kt2λ2. Even when K=0, for systems of sufficiently low symmetry, the anisotropy in ℋS is proportional to t6λ2 when the direct on-site Coulomb interaction U is independent of the orbitals involved and of order t2λ2 otherwise. These latter results apply to the orthorhombic phase of La2CuO4.

Advisor

Date Range for Data Collection (Start Date)

Date Range for Data Collection (End Date)

Digital Object Identifier

Series name and number

Publication date

1995-10-01

Journal title

Physical Review B

Volume number

Issue number

Publisher

Publisher DOI

relationships.isJournalIssueOf

Comments

Recommended citation

Collection