Simulations and electrical conductivity of percolated networks of finite rods with various degrees of axial alignment
Related Collections
Degree type
Discipline
Subject
STICKS
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
We present a three-dimensional simulation and calculation of electrical conductivity above the filler percolation threshold for networks containing finite, conductive cylinders as a function of axial orientation (S) and aspect ratio (L/D). At a fixed volume fraction and L/D, the simulations exhibit a critical degree of orientation, S-c, above which the electrical conductivity decreases dramatically. With increasing filler concentration and aspect ratio, this critical orientation shifts to higher degrees of alignment. Additionally, at a fixed volume fraction and L/D, the simulated electrical conductivity displays a maximum at slight uniaxial orientation, which is less pronounced at higher volume fractions and aspect ratios. Our approach can be used as a predictive tool to design the optimal filler concentration and degree of orientation required to maximize electrical conductivity in polymer nanocomposites with conductive cylindrical fillers of finite dimension.
Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
Journal title
Volume number
Issue number
Publisher
Publisher DOI
Comments
Simulations and electrical conductivity of percolated networks of finite rods with various degrees of axial alignment Sadie I. White, Brian A. DiDonna, Minfang Mu, T. C. Lubensky, and Karen I. Winey, Phys. Rev. B 79, 024301 (2009), DOI:10.1103/PhysRevB.79.024301 Copyright American Physical Society. Reprinted from Physical Review B, Volume 79, Issue 2, Article 024301, January 2009. Publisher URL: http://link.aps.org/doi/10.1103/PhysRevB.79.024301

