Gait Generation and Optimization for Legged Robots
Degree type
Discipline
Subject
Kodlab
Electrical and Computer Engineering
Engineering
Systems Engineering
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
This paper presents a general framework for representing and generating gaitsfor legged robots. We introduce a convenient parametrization of gait generators as dynamical systems possessing specified stable limit cycles over an appropriate torus. Inspired by biology, this parametrization affords a continuous selection of operation within a coordination design plane spanned by axes that determine the mix of ”feedforward/feedback” and centralized/decentralized” control. Applying optimization to the parameterized gait generation system allowed RHex, our robotic hexapod, to learn new gaits demonstrating significant performance increases. For example, RHex can now run at 2.4m/s (up from 0.8m/s), run with a specific resistance of 0.6 (down from 2.0), climb 45◦ inclines (up from 25◦), and traverse 35◦ inclines (up from 15◦).

