Retail Demand Management: Forecasting, Assortment Planning and Pricing

Loading...
Thumbnail Image

Degree type

Doctor of Philosophy (PhD)

Graduate group

Managerial Science and Applied Economics

Discipline

Subject

assortment planning
retailing
empirical research
pricing
seat value
demand estimation
Management Sciences and Quantitative Methods

Funder

Grant number

License

Copyright date

Distributor

Related resources

Contributor

Abstract

In the first part of the dissertation, we focus on the retailer's problem of forecasting demand for products in a category (including those that they have never carried before), optimizing the selected assortment, and customizing the assortment by store to maximize chain-wide revenues or profits. We develop algorithms for demand forecasting and assortment optimization, and demonstrate their use in practical applications. In the second part, we study the sensitivity of the optimal assortment to the underlying assumptions made about demand, substitution and inventory. In particular, we explore the impact of choice model mis-specification and ignoring stock-outs on the optimal profits. We develop bounds on the optimality gap in terms of demand variability, in-stock rate and consumer heterogeneity. Understanding this sensitivity is key to developing more robust approaches to assortment optimization. In the third and final part of the dissertation, we study how the seat value perceived by consumers attending an event in a stadium, depends on the location of their seat relative to the field. We develop a measure of seat value, called the Seat Value Index (SVI), and relate it to seat location and consumer characteristics. We apply our methodology to a proprietary dataset collected by a professional baseball franchise in Japan. Based on the observed heterogeneity in SVI, we provide segment-specific pricing recommendations to achieve a service level objective.

Date of degree

2011-12-21

Date Range for Data Collection (Start Date)

Date Range for Data Collection (End Date)

Digital Object Identifier

Series name and number

Volume number

Issue number

Publisher

Publisher DOI

relationships.isJournalIssueOf

Comments

Recommended citation