Relax and Randomize : From Value to Algorithms

Loading...
Thumbnail Image

Related Collections

Degree type

Discipline

Subject

Statistics and Probability

Funder

Grant number

License

Copyright date

Distributor

Related resources

Contributor

Abstract

We show a principled way of deriving online learning algorithms from a minimax analysis. Various upper bounds on the minimax value, previously thought to be non-constructive, are shown to yield algorithms. This allows us to seamlessly recover known methods and to derive new ones, also capturing such “unorthodox” methods as Follow the Perturbed Leader and the R2 forecaster. Understanding the inherent complexity of the learning problem thus leads to the development of algorithms. To illustrate our approach, we present several new algorithms, including a family of randomized methods that use the idea of a “random playout”. New versions of the Follow-the-Perturbed-Leader algorithms are presented, as well as methods based on the Littlestone’s dimension, efficient methods for matrix completion with trace norm, and algorithms for the problems of transductive learning and prediction with static experts.

Advisor

Date of presentation

2012-01-01

Conference name

Statistics Papers

Conference dates

2023-05-17T15:04:27.000

Conference location

Date Range for Data Collection (Start Date)

Date Range for Data Collection (End Date)

Digital Object Identifier

Series name and number

Volume number

Issue number

Publisher

Publisher DOI

relationships.isJournalIssueOf

Comments

Recommended citation

Collection