Fairness And Feedback In Learning And Games

Loading...
Thumbnail Image

Degree type

Doctor of Philosophy (PhD)

Graduate group

Computer and Information Science

Discipline

Subject

Algorithmic Fairness
Feedback Loops
Game Theory
Machine Learning
Network Formation Games
Computer Sciences

Funder

Grant number

License

Copyright date

2019-10-23T20:19:00-07:00

Distributor

Related resources

Contributor

Abstract

In this thesis, we study fairness and feedback effects in game theory and machine learning. In game theory and economics, financial or technological networks are analyzed for feedback effects. These studies analyze how the connectivity benefits or risk of contagious shocks affect the individual agents or the structure of the network formed by these rational agents. Towards this direction, in the first part of this thesis, we study a series of novel network formation games and analyze the structural properties of the equilibrium networks. Feedback effects can also occur in machine learning problems such as reinforcement learning or sequential allocation problems where the decisions of an algorithm over time can change the resources or actions available to the algorithm in the future as well as the environment in which the algorithm is operating. In the second part of this thesis, we study the effect of these feedback loops and ways to prevent them while also ensuring that the algorithm's actions and allocations satisfy natural notions of fairness. In particular we are interested in quantifying the cost of imposing fairness on learning algorithms.

Date of degree

2019-01-01

Date Range for Data Collection (Start Date)

Date Range for Data Collection (End Date)

Digital Object Identifier

Series name and number

Volume number

Issue number

Publisher

Publisher DOI

relationships.isJournalIssueOf

Comments

Recommended citation