A Dynamic Model for the Forward Curve

Loading...
Thumbnail Image

Related Collections

Degree type

Discipline

Subject

term structure
interest rates
forward rates
forecasting
Statistics and Probability

Funder

Grant number

License

Copyright date

Distributor

Related resources

Contributor

Abstract

This article develops and estimates a dynamic arbitrage-free model of the current forward curve as the sum of (i) an unconditional component, (ii) a maturity-specific component and (iii) a date-specific component. The model combines features of the Preferred Habitat model, the Expectations Hypothesis (ET) and affine yield curve models; it permits a class of low-parameter, multiple state variable dynamic models for the forward curve. We show how to construct alternative parametric examples of the three components from a sum of exponential functions, verify that the resulting forward curves satisfy the Heath-Jarrow-Morton (HJM) conditions, and derive the risk-neutral dynamics for the purpose of pricing interest rate derivatives. We select a model from alternative affine examples that are fitted to the Fama-Bliss Treasury data over an initial training period and use it to generate out-of-sample forecasts for forward rates and yields. For forecast horizons of 6 months or longer, the forecasts of this model significantly outperform those from common benchmark models.

Advisor

Date Range for Data Collection (Start Date)

Date Range for Data Collection (End Date)

Digital Object Identifier

Series name and number

Publication date

2008-01-01

Journal title

The Review of Financial Studies

Volume number

Issue number

Publisher

Publisher DOI

relationships.isJournalIssueOf

Comments

Recommended citation

Collection