Microscopic and Quantitative Investigations on PST Ti-Al / Ti Reaction Diffusion Couples

Loading...
Thumbnail Image

Related Collections

Degree type

Discipline

Subject

Funder

Grant number

License

Copyright date

Distributor

Related resources

Author

Pan, Ling

Contributor

Abstract

Interdiffusion in multi-phase diffusion couples of polycrystalline Ti and polysynthetically twinned (PST) Ti-49.3 at.% Al, with the diffusion direction parallel to the lamellar planes, is investigated in the temperature range 973 – 1173 K. A reaction zone (RZ) of the α2-Ti3Al phase forms between the end materials and exhibits deeper penetration in the α2 lamellae than in the primary γ lamellae. The mass balance and the lamellar thickness across the RZ / PST interface are believed to be the major factors that lead to the different behaviors in the penetration depth of the RZ. Direct measurements of the RZ thickness reveal a parabolic growth of the RZ, indicating a diffusion-controlled growth macroscopically. Concentration profiles from the Ti, through the RZ, into the PST γ and α2 lamellae are measured by x-ray spectroscopy in a transmission electron microscope. Deviations from a diffusion-controlled composition profile indicate some extent of interface-controlled growth. Plateaus are seen in the concentration profiles in the RZ adjacent to the RZ/PST interface, extending through most of the deeply penetrated well region. The interfacial energy and strain energy are possible reasons for the plateaus. The interdiffusion coefficients are found to be largely independent of composition with a temperature dependence that obeys the Arrhenius relationship.

Advisor

Date of presentation

2002-12-02

Conference name

Departmental Papers (MSE)

Conference dates

2023-05-16T21:43:55.000

Conference location

Date Range for Data Collection (Start Date)

Date Range for Data Collection (End Date)

Digital Object Identifier

Series name and number

Volume number

Issue number

Publisher

Publisher DOI

relationships.isJournalIssueOf

Comments

Copyright Materials Research Society. Reprinted from MRS Proceedings Volume 753. 2002 Fall Meeting Symposium BB Defect Properties and Related Phenomena in Intermetallic Alloys Publisher URL: http://www.mrs.org/members/proceedings/fall2002/bb/BB4_5.pdf

Recommended citation

Collection