Adaptive Online Gradient Descent
Loading...
Related Collections
Degree type
Discipline
Subject
Computer Sciences
Statistics and Probability
Statistics and Probability
Funder
Grant number
License
Copyright date
Distributor
Related resources
Contributor
Abstract
We study the rates of growth of the regret in online convex optimization. First, we show that a simple extension of the algorithm of Hazan et al eliminates the need for a priori knowledge of the lower bound on the second derivatives of the observed functions. We then provide an algorithm, Adaptive Online Gradient Descent, which interpolates between the results of Zinkevich for linear functions and of Hazan et al for strongly convex functions, achieving intermediate rates between √T and log T. Furthermore, we show strong optimality of the algorithm. Finally, we provide an extension of our results to general norms.
Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2007-06-14

