Bajcsy, RuzenaFarber, David JPaul, Richard PSmith, Jonathan M2023-05-222023-05-2219932007-08-10https://repository.upenn.edu/handle/20.500.14332/7350Advanced manufacturing concepts such as "Virtual Factories" use an information infrastructure to tie together changing groups of specialized facilities into agile manufacturing systems. A necessary element of such systems is the ability to teleoperate machines, for example telerobotic systems with full-capability sensory feedback loops. We have identified three network advances needed for splitting robotic control from robotic function: increased bandwidth, decreased error rates, and support for isochronous traffic. These features are available in the Gigabit networks under development at Penn and elsewhere. A number of key research questions are posed by gigabit telerobotics. There are issues in network topology, robot control and distributed system software, packaging and transport of sensory data (including wide-area transport), and performance implications of architectural choices using measures such as cost, response time, and network utilization. We propose to explore these questions experimentally in a joint research effort combining the Distributed Systems Laboratory (DSL) and the General Robotics and Sensory Perception (GRASP) Laboratory at the University of-Pennsylvania. The proposed experiments should provide important early results. A detailed research program is described.Gigabit Telerobotics: Applying Advanced Information InfrastructureReport