Falk, Emily B
Email Address
ORCID
Disciplines
relationships.isProjectOf
relationships.isOrgUnitOf
Position
Introduction
Research Interests
Collection
45 results
Search Results
Now showing 1 - 10 of 45
Publication Experimental Effects of Injunctive Norms on Simulated Risky Driving Among Teenage Males(2014-07-01) Simons-Morton, Bruce G; Pradhan, Anuj K; Bingham, C Raymond; Falk, Emily B; Li, Kaigang; Ouimet, Marie Claude; Almani, Farideh; Shope, Jean TObjective: Teenage passengers affect teenage driving performance, possibly by social influence. To examine the effect of social norms on driving behavior, male teenagers were randomly assigned to drive in a simulator with a peer-aged confederate to whom participants were primed to attribute either risk-accepting or risk-averse social norms. It was hypothesized that teenage drivers would engage in more risky driving behavior in the presence of peer passengers than no passengers, and with a risk-accepting compared with a risk-averse passenger. Method: 66 male participants aged 16 to18 years holding a provisional driver license were randomized to drive with a risk-accepting or risk-averse passenger in a simulator. Failure to Stop at a red light and percent Time in Red (light) were measured as primary risk-relevant outcomes of interest at 18 intersections, while driving once alone and once with their assigned passenger. Results: The effect of passenger presence on risky driving was moderated by passenger type for Failed to Stop in a generalized linear mixed model (OR = 1.84, 95% CI [1.19, 2.86], p < .001), and percent Time in Red in a mixed model (B = 7.71, 95% CI [1.54, 13.87], p < .05). Conclusions: Exposure of teenage males to a risk-accepting confederate peer increased teenage males’ risky simulated driving behavior compared with exposure to a risk-averse confederate peer. These results indicate that variability in teenage risky driving could be partially explained by social norms.Publication A neural model of valuation and information virality(2017-03-14) Scholz, Christin; Baek, Elisa C.; O’Donnell, Matthew B.; Cappella, Joseph N.; Falk, Emily B.; Kim, Hyun SukInformation sharing is an integral part of human interaction that serves to build social relationships and affects attitudes and behaviors in individuals and large groups. We present a unifying neurocognitive framework of mechanisms underlying information sharing at scale (virality). We argue that expectations regarding self-related and social consequences of sharing (e.g., in the form of potential for self-enhancement or social approval) are integrated into a domain-general value signal that encodes the value of sharing a piece of information. This value signal translates into population-level virality. In two studies (n = 41 and 39 participants), we tested these hypotheses using functional neuroimaging. Neural activity in response to 80 New York Times articles was observed in theory-driven regions of interest associated with value, self, and social cognitions. This activity then was linked to objectively logged population-level data encompassing n = 117,611 internet shares of the articles. In both studies, activity in neural regions associated with self-related and social cognition was indirectly related to population-level sharing through increased neural activation in the brain’s value system. Neural activity further predicted populationlevel outcomes over and above the variance explained by article characteristics and commonly used self-report measures of sharing intentions. This parsimonious framework may help advance theory, improve predictive models, and inform new approaches to effective intervention. More broadly, these data shed light on the core functions of sharing—to express ourselves in positive ways and to strengthen our social bonds.Publication Getting the Word Out: Neural Correlates of Enthusiastic Message Propagation(2012-11-26) Falk, Emily B; O'Donnell, Matthew Brook; Liberman, Matthew DWhat happens in the mind of a person who first hears a potentially exciting idea? We examined the neural precursors of spreading ideas with enthusiasm, and dissected enthusiasm into component processes that can be identified through automated linguistic analysis, gestalt human ratings of combined linguistic and non-verbal cues, and points of convergence/divergence between the two. We combined tools from natural language processing (NLP) with data gathered using fMRI to link the neurocognitive mechanisms that are set in motion during initial exposure to ideas and subsequent behaviors of these message communicators outside of the scanner. Participants' neural activity was recorded as they reviewed ideas for potential television show pilots. Participants' language from video-taped interviews collected post-scan was transcribed and given to an automated linguistic sentiment analysis (SA) classifier, which returned ratings for evaluative language (evaluative vs. descriptive) and valence (positive vs. negative). Separately, human coders rated the enthusiasm with which participants transmitted each idea. More positive sentiment ratings by the automated classifier were associated with activation in neural regions including medial prefrontal cortex; MPFC, precuneus/posterior cingulate cortex; PC/PCC, and medial temporal lobe; MTL. More evaluative, positive, descriptions were associated exclusively with neural activity in temporal-parietal junction (TPJ). Finally, human ratings indicative of more enthusiastic sentiment were associated with activation across these regions (MPFC, PC/PCC, DMPFC, TPJ, and MTL) as well as in ventral striatum (VS), inferior parietal lobule and premotor cortex. Taken together, these data demonstrate novel links between neural activity during initial idea encoding and the enthusiasm with which the ideas are subsequently delivered. This research lays the groundwork to use machine learning and neuroimaging data to study word of mouth communication and the spread of ideas in both traditional and new media environments.Publication Social Status Modulates Neural Activity in the Mentalizing Network(2012-04-15) Muscatell, Keely A; Morelli, Sylvia A; Falk, Emily B; Way, Baldwin M; Pfeifer, Jennifer H; Galinsky, Adam D; Lieberman, Matthew D; Dapretto, Mirella; Eisenberg, Naomi IThe current research explored the neural mechanisms linking social status to perceptions of the social world. Two fMRI studies provide converging evidence that individuals lower in social status are more likely to engage neural circuitry often involved in ‘mentalizing’ or thinking about others' thoughts and feelings. Study 1 found that college students' perception of their social status in the university community was related to neural activity in the mentalizing network (e.g., DMPFC, MPFC, precuneus/PCC) while encoding social information, with lower social status predicting greater neural activity in this network. Study 2 demonstrated that socioeconomic status, an objective indicator of global standing, predicted adolescents' neural activity during the processing of threatening faces, with individuals lower in social status displaying greater activity in the DMPFC, previously associated with mentalizing, and the amygdala, previously associated with emotion/salience processing. These studies demonstrate that social status is fundamentally and neurocognitively linked to how people process and navigate their social worlds.Publication What Is a Representative Brain? Neuroscience Meets Population Science(2013-10-29) Falk, Emily B; Hyde, Luke W; Mitchell, Colter; Faul, Jessica; Gonzalez, Richard; Heitzeg, Mary M; Keating, Daniel P; Langa, Kenneth M; Martz, Meghan E; Maslowsky, Julie; Morrison, Frederick J; Noll, Douglas C; Patrick, Megan E; Pfeffer, Fabian T; Reuter-Lorenz, Patricia A; Thomason, Moriah E; Davis-Kean, Pamela; Monk, Christopher S; Schulenberg, JohnThe last decades of neuroscience research have produced immense progress in the methods available to understand brain structure and function. Social, cognitive, clinical, affective, economic, communication, and developmental neurosciences have begun to map the relationships between neuro-psychological processes and behavioral outcomes, yielding a new understanding of human behavior and promising interventions. However, a limitation of this fast moving research is that most findings are based on small samples of convenience. Furthermore, our understanding of individual differences may be distorted by unrepresentative samples, undermining findings regarding brain–behavior mechanisms. These limitations are issues that social demographers, epidemiologists, and other population scientists have tackled, with solutions that can be applied to neuroscience. By contrast, nearly all social science disciplines, including social demography, sociology, political science, economics, communication science, and psychology, make assumptions about processes that involve the brain, but have incorporated neural measures to differing, and often limited, degrees; many still treat the brain as a black box. In this article, we describe and promote a perspective—population neuroscience—that leverages interdisciplinary expertise to (i) emphasize the importance of sampling to more clearly define the relevant populations and sampling strategies needed when using neuroscience methods to address such questions; and (ii) deepen understanding of mechanisms within population science by providing insight regarding underlying neural mechanisms. Doing so will increase our confidence in the generalizability of the findings. We provide examples to illustrate the population neuroscience approach for specific types of research questions and discuss the potential for theoretical and applied advances from this approach across areas.Publication Neural Activity During Health Messaging Predicts Reductions in Smoking Above and Beyond Self-Report(2011-03-01) Falk, Emily B; Berkman, Elliot T; Whalen, Daneille; Lieberman, Matthew DObjective: The current study tested whether neural activity in response to messages designed to help smokers quit could predict smoking reduction, above and beyond self-report. Design: Using neural activity in an a priori region of interest (a subregion of medial prefrontal cortex [MPFC]), in response to ads designed to help smokers quit smoking, we prospectively predicted reductions in smoking in a community sample of smokers (N = 28) who were attempting to quit smoking. Smoking was assessed via expired carbon monoxide (CO; a biological measure of recent smoking) at baseline and 1 month following exposure to professionally developed quitting ads. Results: A positive relationship was observed between activity in the MPFC region of interest and successful quitting (increased activity in MPFC was associated with a greater decrease in expired CO). The addition of neural activity to a model predicting changes in CO from self-reported intentions, self-efficacy, and ability to relate to the messages significantly improved model fit, doubling the variance explained (R²self-report = .15, R²self-report + neural activity = .35, R²change = .20). Conclusion: Neural activity is a useful complement to existing self-report measures. In this investigation, we extend prior work predicting behavior change based on neural activity in response to persuasive media to an important health domain and discuss potential psychological interpretations of the brain–behavior link. Our results support a novel use of neuroimaging technology for understanding the psychology of behavior change and facilitating health promotion.Publication Experimental Effects of Pre-Drive Arousal on Teenage Simulated Driving Performance in the Presence of a Teenage Passenger(2015-01-01) Simons-Morton, Bruce G; Bingham, C. R; Li, Kaigang; Slope, Jean; Pradhan, Anuj K; Falk, Emily B; Albert, Paul STeenage passengers increase teenage driving risk, but this may be conditional on events and emotions immediately preceding driving. An experimental simulation study evaluated the effect of pre-drive arousal on risky driving in the presence of a confederate teenage passenger. In a two-by-two between-subjects design, participants were randomized to high or low pre-drive arousal and passenger present or not present conditions. Prior to the drive participants played the Nintendo Wii video game, Rock BandTM. In the high-arousal condition participants stood while playing high-energy Beatles songs; in the low arousal condition participants sat while playing low-energy Beatles songs. The manipulation produced differences in arousal by group. Group differences in risky driving were in the expected direction, but were not statistically significant at p = .05 on any of the three outcome measures, which included Failed to Stop (failing to stop at signalized intersections in the dilemma zone), Percent Time in Red (in intersections), and Pass Slow Vehicle (electing to pass a slow vehicle).Publication Associations between Coherent Neural Activity(2018-04-01) Cooper, Nicole; Tompson, Steven; O'Donnell, Matthew B; Vettel, Jean M; Bassett, Danielle S; Falk, Emily BObjective: Worldwide, tobacco use is the leading cause of preventable death and illness. One common strategy for reducing the prevalence of cigarette smoking and other health risk behaviors is the use of graphic warning labels (GWLs). This has led to widespread interest from the perspective of health psychology in understanding the mechanisms of GWL effectiveness. Here we investigated differences in how the brain responds to negative, graphic warning label-inspired antismoking ads and neutral control ads, and we probed how this response related to future behavior. Method: A group of smokers (N = 45) viewed GWL-inspired and control antismoking ads while undergoing fMRI, and their smoking behavior was assessed before and one month after the scan. We examined neural coherence between two regions in the brain’s valuation network, the medial prefrontal cortex (MPFC) and ventralstriatum (VS). Results: We found that greater neural coherence in the brain’s valuation network during GWL ads (relative to control ads) preceded later smoking reduction. Conclusions: Our results suggest that the integration of information about message value may be key for message influence. Understanding how the brain responds to health messaging and relates to future behavior could ultimately contribute to the design of effective messaging campaigns, as well as more broadly to theories of message effects and persuasion across domains.Publication Interactive Effects of Three Core Goal Pursuit Processes on Brain Control Systems: Goal Maintenance, Performance Monitoring, and Response Inhibition(2012-06-29) Berkman, Elliot T; Falk, Emily B; Lieberman, Matthew DGoal attainment relies in part on one’s ability to maintain a cognitive representation of the desired goal (goal maintenance), monitor the current state vis-à-vis the targeted end state and remain vigilant for lapses in progress (performance monitoring), and inhibit counter-goal behaviors (response inhibition). Because neurocognitive studies have typically examined these three processes in isolation from one another, little is known regarding if and how they interact during goal pursuit. However, these processes frequently co-occur during online, real-world goal pursuit. The present study employed a novel task to investigate how goal maintenance, performance monitoring, and response inhibition interact with one another. We identified functional activations distinct to each of the processes that correspond to results of prior investigations. In addition, we report interactive effects between response inhibition and goal maintenance in the dorsal anterior cingulate cortex and between performance monitoring and goal maintenance in the superior frontal gyrus and supramarginal gyrus. Implications for studying the neural systems of in situ goals include the need for both experimental designs that distinguish between process, but also more complex, realistic tasks to begin to map interactions among these neurocognitive processes and how they are altered by the presence or absence of one another.Publication Modulating the neural bases of persuasion: why/how, gain/loss, and users/non-users(2017-02-01) Vezich, Stephanie; Katzman, Perri L.; Ames, Daniel L.; Falk, Emily B.; Lieberman, Matthew D.Designing persuasive content is challenging, in part because people can be poor predictors of their actions. Medial prefrontal cortex (MPFC) activation during message exposure reliably predicts downstream behavior, but past work has been largely atheoretical. We replicated past results on this relationship and tested two additional framing effects known to alter message receptivity. First, we examined gain- vs. loss-framed reasons for a health behavior (sunscreen use). Consistent with predictions from prospect theory, we observed greater MPFC activity to gain- vs. loss-framed messages, and this activity was associated with behavior. This relationship was stronger for those who were not previously sunscreen users. Second, building on theories of action planning, we compared neural activity during messages regarding how vs. why to enact the behavior. We observed rostral inferior parietal lobule and posterior inferior frontal gyrus activity during action planning (“how” messages), and this activity was associated with behavior; this is in contrast to the relationship between MPFC activity during the “why” (i.e., gain and loss) messages and behavior. These results reinforce that persuasion occurs in part via self-value integration—seeing value and incorporating persuasive messages into one's self-concept—and extend this work to demonstrate how message framing and action planning may influence this process.

