Shi, Jianbo
Email Address
ORCID
Disciplines
relationships.isProjectOf
relationships.isOrgUnitOf
Position
Introduction
Research Interests
Collection
26 results
Search Results
Now showing 1 - 10 of 26
Publication Tracking by Planning(2011-01-01) Gong, Haifeng; Sim, Jiwoong; Likhachev, Maxim; Shi, JianboWe introduce a method for tracking multiple people in a cluttered street scene. We use global context to address the challenge of long occlusion by endowing each tracked object with a planning agent. This planner uses context of the street scene, people and other moving objects to reason about pedestrian intended behavior for tracking under occlusion and ambiguity. We extract short but robust trajectories called tracklets by tracking people with a simple appearance model. We formulate the tracking problem as a batch mode optimization, linking tracklets into paths, each with supporting evidence by an agent’s goal directed behavior, and image partial matching along the trajectory gap. We propose a global criteria for consistent linking of the tracklet with planning that can correct local ambiguity in linking. We test our algorithm in a challenging real world setting, where we automatically estimate scene context and intended goals, then track multiple people from a moving camera.Publication Object Recognition using Boosted Discriminants(2001-12-08) Mahamud, Shyjan; Hebert, Martial; Shi, JianboWe approach the task of object discrimination as that of learning efficient "codes" for each object class in terms of responses to a set of chosen discriminants. We formulate this approach in an energy minimization framework. The "code" is built incrementally by successively constructing discriminants that focus on pairs of training images of objects that are currently hard to classify. The particular discriminants that we use partition the set of objects of interest into two well-separated groups. We find the optimal discriminant as well as partition by formulating an objective criteria that measures the well-separateness of the partition. We derive an iterative solution that alternates between the solutions for two generalized eigenproblems, one for the discriminant parameters and the other for the indicator variables denoting the partition. We show how the optimization can easily be biased to focus on hard to classify pairs, which enables us to choose new discriminants one by one in a sequential manner We validate our approach on a challenging face discrimination task using parts as features and show that it compares favorably with the performance of an eigenspace method.Publication Shape from Shading: Recognizing the Mountains through a Global View(2006-06-01) Zhu, Qihui; Shi, JianboResolving local ambiguities is an important issue for shape from shading (SFS). Pixel ambiguities of SFS can be eliminated by propagation approaches. However, patch ambiguities still exist. Therefore, we formulate the global disambiguation problem to resolve these ambiguities. Intuitively, it can be interpreted as flipping patches and adjusting heights such that the result surface has no kinks. The problem i s intractable because exponentially many possible configurations need to be checked. Alternatively, we solve the integrability testing problem closely related to the original one. It can be viewed as finding a surface which satisfies the global integrability constraint. To encode the constraints, we introduce a graph formulation called configuration graph. Searching the solution on this graph can be reduced to a Max-cut problem and its solution is computable using semidefinite programming (SDP) relaxation. Tests carried out on synthetic and real images show that the global disambiguation works well fro complex shapes.Publication Conditional Entropies as Over-Segmentation and Under-Segmentation Metrics for Multi-Part Image Segmentation(2011-01-01) Gong, Haifeng; Shi, JianboIn this paper, we define two conditional entropy measures for performance evaluation of general image segmentation. Given a segmentation label map and a ground truth label map, our measures describe their compatibility in two ways. The first one is the conditional entropy of the segmentation given the ground truth, which indicates the oversegmentation rate. The second one is that of the ground truth given the segmentation, which indicates the under-segmentation rate. The two conditional entropies indicate the trade-off between smaller and larger granularities like false positive rate and false negative rate in ROC, and precision and recall in PR curve. Our measures are easy to implement, and involve no threshold or other parameter, have very intuitive explanation and many good theoretical properties, e.g., good bounds, monotonicity, continuity. Experiments show that our measures work well on Berkeley Image Segmentation Benchmark using three segmentation algorithms, Efficient Graph- Based segmentation, Mean Shift and Normalized Cut. We also give an asymmetric similarity measure based on the two entropies and compared it with Variation of Information. The comparison revealled that our method has advantages in many situations.We also checked the coarse-to-fine compatibility of segmentation results with changing parameters and ground truths from different annotators.Publication Detecting Unusual Activity in Video(2004-06-27) Zhong, Hua; Shi, Jianbo; Visontai, MirkoWe present an unsupervised technique for detecting unusual activity in a large video set using many simple features. No complex activity models and no supervised feature selections are used. We divide the video into equal length segments and classify the extracted features into prototypes, from which a prototype–segment co-occurrence matrix is computed. Motivated by a similar problem in document-keyword analysis, we seek a correspondence relationship between prototypes and video segments which satisfies the transitive closure constraint. We show that an important sub-family of correspondence functions can be reduced to co-embedding prototypes and segments to N-D Euclidean space. We prove that an efficient, globally optimal algorithm exists for the co-embedding problem. Experiments on various real-life videos have validated our approach.Publication Solving Markov Random Fields with Spectral Relaxation(2007-01-01) Cour, Timothee; Shi, JianboMarkov Random Fields (MRFs) are used in a large array of computer vision and maching learning applications. Finding the Maximum Aposteriori (MAP) solution of an MRF is in general intractable, and one has to resort to approximate solutions, such as Belief Prop- agation, Graph Cuts, or more recently, ap- proaches based on quadratic programming. We propose a novel type of approximation, Spectral relaxation to Quadratic Program- ming (SQP). We show our method offers tighter bounds than recently published work, while at the same time being computationally efficient. We compare our method to other algorithms on random MRFs in various settings.Publication Saliency Based Opportunitstic Search for Object Part Extraction and Labeling(2008-01-01) Wu, Yang; Zhu, QIhui; Shi, Jianbo; Zheng, NanningWe study the task of object part extraction and labeling, which seeks to understand objects beyond simply identifiying their bounding boxes. We start from bottom-up segmentation of images and search for correspondences between object parts in a few shape models and segments in images. Segments comprising different object parts in the image are usually not equally salient due to uneven contrast, illumination conditions, clutter, occlusion and pose changes. Moreover, object parts may have different scales and some parts are only distinctive and recognizable in a large scale. Therefore, we utilize a multi-scale shape representation of objects and their parts, figural contextual information of the whole object and semantic contextual information for parts. Instead of searching over a large segmentation space, we present a saliency based opportunistic search framework to explore bottom-up segmentation by gradually expanding and bounding the search domain.We tested our approach on a challenging statue face dataset and 3 human face datasets. Results show that our approach significantly outperforms Active Shape Models using far fewer exemplars. Our framework can be applied to other object categories.Publication Multi-hypothesis Motion Planning for Visual Object Tracking(2011-01-01) Gong, Haefong; Sim, Jack; Likhachev, Maxim; Shi, JianboIn this paper, we propose a long-term motion model for visual object tracking. In crowded street scenes, persistent occlusions are a frequent challenge for tracking algorithm and a robust, long-term motion model could help in these situations. Motivated by progresses in robot motion planning, we propose to construct a set of ‘plausible’ plans for each person, which are composed of multiple long-term motion prediction hypotheses that do not include redundancies, unnecessary loops or collisions with other objects. Constructing plausible plan is the key step in utilizing motion planning in object tracking, which has not been fully investigate in robot motion planning. We propose a novel method of efficiently constructing disjoint plans in different homotopy classes, based on winding numbers and winding angles of planned paths around all obstacles. As the goals can be specified by winding numbers and winding angles, we can avoid redundant plans in the same homotopy class and multiple whirls or loops around a single obstacle. We test our algorithm on a challenging, real-world dataset, and compare our algorithm with Linear Trajectory Avoidance and a simplified linear planning model. We find that our algorithm outperforms both algorithms in most sequences.Publication Image Matching via Saliency Region Correspondences(2007-01-01) Shi, Jianbo; Toshev, Alexander; Daniilidis, KostasWe introduce the notion of co-saliency for image matching. Our matching algorithm combines the discriminative power of feature correspondences with the descriptive power of matching segments. Co-saliency matching score favors correspondences that are consistent with ’soft’ image segmentation as well as with local point feature matching. We express the matching model via a joint image graph (JIG) whose edge weights represent intra- as well as inter-image relations. The dominant spectral components of this graph lead to simultaneous pixel-wise alignment of the images and saliency-based synchronization of ’soft’ image segmentation. The co-saliency score function, which characterizes these spectral components, can be directly used as a similarity metric as well as a positive feedback for updating and establishing new point correspondences. We present experiments showing the extraction of matching regions and pointwise correspondences, and the utility of the global image similarity in the context of place recognition.Publication Grouping Contours Via a Related Image(2008-01-01) Srinivasan, Praveen; Wang, Liming; Shi, JianboContours have been established in the biological and computer vision literature as a compact yet descriptive representation of object shape. While individual contours provide structure, they lack the large spatial support of region segments (which lack internal structure). We present a method for further grouping of contours in an image using their relationship to the contours of a second, related image. Stereo, motion, and similarity all provide cues that can aid this task; contours that have similar transformations relating them to their matching contours in the second image likely belong to a single group. To find matches for contours, we rely only on shape, which applies directly to all three modalities without modification, in contrast to the specialized approaches developed for each independently. Visually salient contours are extracted in each image, along with a set of candidate transformations for aligning subsets of them. For each transformation, groups of contours with matching shape across the two images are identified to provide a context for evaluating matches of individual contour points across the images. The resulting contexts of contours are used to perform a final grouping on contours in the original image while simultaneously finding matches in the related image, again by shape matching. We demonstrate grouping results on image pairs consisting of stereo, motion, and similar images. Our method also produces qualitatively better results against a baseline method that does not use the inferred contexts.

