Jerolmack, Douglas J
Email Address
ORCID
Disciplines
relationships.isProjectOf
relationships.isOrgUnitOf
Position
Introduction
Research Interests
Collection
38 results
Search Results
Now showing 1 - 10 of 38
Publication Sorting Out Abrasion in a Gypsum Dune Field(2011-06-01) Jerolmack, Douglas J; Reitz, Meredith D; Martin, Raleigh LGrain size distributions in eolian settings are the result of both sorting and abrasion of grains by saltation. The two are tightly coupled because mobility of particles determines abrasion rate, while abrasion affects the mobility of particles by changing their mass and shape; few field studies have examined this quantitatively. We measured grain size and shape over a 9 km transect downwind of a line sediment source at White Sands National Monument, a gypsum dune field. The sediment source is composed of rodlike (elongate), coarse particles whose shapes appear to reflect the crystalline structure of gypsum. Dispersion in grain size decreases rapidly from the source. Coarse particles gradually become less elongate, while an enrichment of smaller, more elongate grains is observed along the transect. Transport calculations confirm that White Sands is a threshold sand sea in which (1) the predominant particle diameter reflects grains transported in saltation under the dune-forming wind velocity and (2) smaller, elongate grains move in suspension under this dominant wind. Size-selective transport explains first-order trends in grain size; however, abrasion changes the shape of saltating grains and produces elongate, smaller grains that are spallation and breaking products of larger particles. Both shape and size changes saturate 5–6 km downwind of the source. As large particles become more equant, abrasion rates slow down because protruding regions have been removed. Such asymptotic behavior of shape and abrasion rate has been observed in theory and experiment and is likely a generic result of the abrasion process in any environment.Publication Robotic Measurement of Aeolian Processes(2015-01-01) Jerolmack, Douglas J; Roberts, Sonia; Reverdy, Paul B; Lancaster, Nick; Nikolich, George; Shipley, Thomas F; Koditschek, Daniel E.; van Pelt, Scott; Zobeck, TedMeasurements used to study wind shear stress and turbulence, surface roughness, sand flux, and dust emissions are typically obtained from stationary instrumentation, and are thus limited spatially. They are also dependent on deployment of instrumentation for specific events and thus the are limited temporally. We have been adapting a rough-terrain legged robot capable of rapidly traversing desert terrain to serve as a semi-autonomous, reactive mobile sensory platform (RHex [1]), which would not share these limitations. We report on early trials of the robotic platform at the Jornada LTER and White Sands National Monument to test the feasibility of gathering measurements of airflow and rates of particle transport on a dune, assessing the role of roughness elements such as vegetation in modifying the wind shear stresses incident on the surface, and estimating erosion susceptibility in an arid soil. The robot not only serves as a mobile platform for science instruments; it can also perform controlled “kick tests” to locally examine soil strength. We outline a strategy for mapping soil erodibility and its controlling parameters using the unique capabilities of RHex, and the implications for understanding erosion and dust emission from complex terrain.Publication A Minimum Time for the Formation of Holden Northeast Fan, Mars(2004-11-01) Jerolmack, Douglas J; Mohrig, David; Zuber, Maria T; Byrne, ShaneThe recently discovered deposits of a channelized fan located northeast of Holden Crater preserve a history of vertical and lateral accretion and avulsion of many channels, indicating water flowed freely across the surface of the fan during its construction. These sedimentary deposits, however, do not unambiguously discriminate between a deltaic or purely riverine origin for the feature. By using a numerical model describing fan construction solely by river channels, we estimate a minimum formation time of several decades to centuries. A minimum value for the total volume of transporting fluid required to construct the fan is modest, 900 km3, and may not have required precipitation.Publication The Stratigraphic Filter and Bias in Measurement of Geologic Rates(2011-06-01) Schumer, Rina; Jerolmack, Douglas J; McElroy, BrandonErosion and deposition rates estimated from the stratigraphic record frequently exhibit a power-law dependence on measurement interval. This dependence can result from a power-law distribution of stratigraphic hiatuses. By representing the stratigraphic filter as a stochastic process called a reverse ascending ladder, we describe a likely origin of power-law hiatuses, and thus, rate scaling. While power-law hiatuses in certain environments can be a direct result of power-law periods of stasis (no deposition or erosion), they are more generally the result of randomness in surface fluctuations irrespective of mean subsidence or uplift. Autocorrelation in fluctuations can make hiatuses more or less heavy-tailed, but still exhibit power-law characteristics. In addition we show that by passing stratigraphic data backward through the filter, certain statistics of surface kinematics from their formative environments can be inferred.Publication Fractal Patterns in Riverbed Morphology Produce Fractal Scaling of Water Storage Times(2015-07-16) Aubeneau, Antoine F; Martin, Raleigh L; Schumer, Rina; Jerolmack, Douglas J; Packman, Aaron IRiver topography is famously fractal, and the fractality of the sediment bed surface can produce scaling in solute residence time distributions. Empirical evidence showing the relationship between fractal bed topography and scaling of hyporheic travel times is still lacking. We performed experiments to make high-resolution observations of streambed topography and solute transport over naturally formed sand bedforms in a large laboratory flume. We analyzed the results using both numerical and theoretical models. We found that fractal properties of the bed topography do indeed affect solute residence time distributions. Overall, our experimental, numerical, and theoretical results provide evidence for a coupling between the sand-bed topography and the anomalous transport scaling in rivers. Larger bedforms induced greater hyporheic exchange and faster pore water turnover relative to smaller bedforms, suggesting that the structure of legacy morphology may be more important to solute and contaminant transport in streams and rivers than previously recognized.Publication Ground robotic measurement of aeolian processes(2017-08-01) Qian, Feifei; Jerolmack, Douglas J; Lancaster, Nicholas; Nikolich, George; Reverdy, Paul B; Roberts, Sonia F; Shipley, Thomas F; Van pelt, Robert Scott; Zobeck, Ted M; Koditschek, Daniel EModels of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These devices are often cumbersome and logistically difficult to set up and maintain, especially near steep or vegetated dune surfaces. Significant advances in instrumentation are needed to provide the datasets that are required to validate and improve mechanistic models of aeolian sediment transport. Recent advances in robotics show great promise for assisting and amplifying scientists’ efforts to increase the spatial and temporal resolution of many environmental measurements governing sediment transport. The emergence of cheap, agile, human-scale robotic platforms endowed with increasingly sophisticated sensor and motor suites opens up the prospect of deploying programmable, reactive sensor payloads across complex terrain in the service of aeolian science. This paper surveys the need and assesses the opportunities and challenges for amassing novel, highly resolved spatiotemporal datasets for aeolian research using partially-automated ground mobility. We review the limitations of existing measurement approaches for aeolian processes, and discuss how they may be transformed by ground-based robotic platforms, using examples from our initial field experiments. We then review how the need to traverse challenging aeolian terrains and simultaneously make high-resolution measurements of critical variables requires enhanced robotic capability. Finally, we conclude with a look to the future, in which robotic platforms may operate with increasing autonomy in harsh conditions. Besides expanding the completeness of terrestrial datasets, bringing ground-based robots to the aeolian research community may lead to unexpected discoveries that generate new hypotheses to expand the science itself. For more information: Kod*lab (http://kodlab.seas.upenn.edu/)Publication Onset of Sediment Transport Is a Continuous Transition Driven by Fluid Shear and Granular Creep(2015-03-09) Houssais, Morgane; Ortiz, Carlos P; Durian, Douglas; Jerolmack, Douglas JFluid-sheared granular transport sculpts landscapes and undermines infrastructure, yet predicting the onset of sediment transport remains notoriously unreliable. For almost a century, this onset has been treated as a discontinuous transition at which hydrodynamic forces overcome gravity-loaded grain–grain friction. Using a custom laminar-shear flume to image slow granular dynamics deep into the bed, here we find that the onset is instead a continuous transition from creeping to granular flow. This transition occurs inside the dense granular bed at a critical viscous number, similar to granular flows and colloidal suspensions and inconsistent with hydrodynamic frameworks. We propose a new phase diagram for sediment transport, where ‘bed load’ is a dense granular flow bounded by creep below and suspension above. Creep is characteristic of disordered solids and reminiscent of soil diffusion on hillslopes. Results provide new predictions for the onset and dynamics of sediment transport that challenge existing modelsPublication A Potential Vorticity Theory for the Formation of Elongate Channels in River Deltas and Lakes(2010-12-01) Falcini, Federico; Jerolmack, Douglas JRivers empty into oceans and lakes as turbulent sediment-laden jets, which can be characterized by a Gaussian horizontal velocity profile that spreads and decays downstream because of shearing and lateral mixing at the jet margins. Recent experiments demonstrate that this velocity field controls river-mouth sedimentation patterns. In nature, diffuse jets are associated with mouth bar deposition forming bifurcating distributary networks, while focused jets are associated with levee deposition and the growth of elongate channels that do not bifurcate. River outflows from elongate channels are similar in structure to cold filaments observed in ocean currents, where high potential vorticity helps to preserve coherent structure over large distances. Motivated by these observations, we propose a hydrodynamic theory that seeks to predict the conditions under which elongate channels form. Our approach models jet velocity patterns using the flow vorticity. Both shearing and lateral spreading are directly related to the vertical component of vorticity. We introduce a new kind of potential vorticity that incorporates sediment concentration and thus allows study of jet sedimentation patterns. The potential vorticity equation reduces the number of fluid momentum equations to one without losing generality. This results in a compact analytical solution capable of describing the streamwise evolution of the potential vorticity of a sediment-laden jet from initial conditions at the river mouth. Our theory predicts that high potential vorticity is a necessary condition for focused levee deposition and the creation of elongate channels. Comparison to numerical, laboratory, and field studies indicates that potential vorticity is a primary control on channel morphology. Our results may be useful for designing river delta restoration schemes such as the proposed Mississippi Delta diversion.Publication Generalized Sorting Profile of Alluvial Fans(2014-10-28) Miller, Kimberly Louise Litwin; Reitz, Meredith D; Jerolmack, Douglas JAlluvial rivers often exhibit self-similar gravel size distributions and abrupt gravel-sand transitions. Experiments suggest that these sorting patterns are established rapidly, but how—and how fast—this convergence occurs in the field is unknown. We examine the establishment of downstream sorting patterns in a kilometer-scale alluvial fan. The sharp transition from canyon to unconfined, channelized fan provides a well-defined boundary condition. The channel changes from deep and entrenched at the fan apex to shallow and depositional over a short distance, exhibiting nonequilibrium behavior. The resulting gravel-fining profile is not self-similar; the particle size distribution narrows until approximate equal mobility is achieved. Downfan, the gravel-sand transition appears to exhibit a self-similar form; field and laboratory data collapse when downstream distance is normalized by the location of the transition. Results suggest a generalized sorting profile for alluvial fans as a consequence of the threshold of motion and nonequilibrium channels.Publication Dynamics and Mechanics of Bed-Load Tracer Particles(2014-12-19) Phillips, Colin B; Jerolmack, Douglas JUnderstanding the mechanics of bed load at the flood scale is necessary to link hydrology to landscape evolution. Here we report on observations of the transport of coarse sediment tracer particles in a cobble-bedded alluvial river and a step-pool bedrock tributary, at the individual flood and multi-annual timescales. Tracer particle data for each survey are composed of measured displacement lengths for individual particles, and the number of tagged particles mobilized. For single floods we find that measured tracer particle displacement lengths are exponentially distributed; the number of mobile particles increases linearly with peak flood Shields stress, indicating partial bed load transport for all observed floods; and modal displacement distances scale linearly with excess shear velocity. These findings provide quantitative field support for a recently proposed modeling framework based on momentum conservation at the grain scale. Tracer displacement is weakly negatively correlated with particle size at the individual flood scale; however cumulative travel distance begins to show a stronger inverse relation to grain size when measured over many transport events. The observed spatial sorting of tracers approaches that of the river bed, and is consistent with size-selective deposition models and laboratory experiments. Tracer displacement data for the bedrock and alluvial channels collapse onto a single curve – despite more than an order of magnitude difference in channel slope – when variations of critical Shields stress and flow resistance between the two are accounted for. Results show how bed load dynamics may be predicted from a record of river stage, providing a direct link between climate and sediment transport.

