Boahen, Kwabena A

Email Address

ORCID

Disciplines

relationships.isProjectOf

relationships.isOrgUnitOf

Position

Introduction

Research Interests

Search Results

Now showing 1 - 10 of 25
  • Publication
    A biomorphic digital image sensor
    (2003-02-01) Culurciello, Eugenio; Etienne-Cummings, Ralph; Boahen, Kwabena A
    An arbitrated address-event imager has been designed and fabricated in a 0.6-μm CMOS process. The imager is composed of 80 x 60 pixels of 32 x 30 μm. The value of the light intensity collected by each photosensitive element is inversely proportional to the pixel’s interspike time interval. The readout of each spike is initiated by the individual pixel; therefore, the available output bandwidth is allocated according to pixel output demand. This encoding of light intensities favors brighter pixels, equalizes the number of integrated photons across light intensity, and minimizes power consumption. Tests conducted on the imager showed a large output dynamic range of 180 dB (under bright local illumination) for an individual pixel. The array, on the other hand, produced a dynamic range of 120 dB (under uniform bright illumination and when no lower bound was placed on the update rate per pixel). The dynamic range is 48.9 dB value at 30-pixel updates/s. Power consumption is 3.4 mW in uniform indoor light and a mean event rate of 200 kHz, which updates each pixel 41.6 times per second. The imager is capable of updating each pixel 8.3K times per second (under bright local illumination).
  • Publication
    A retinomorphic chip with parallel pathways : encoding INCREASING, ON, DECREASING, and OFF visual signals
    (2001-02-12) Boahen, Kwabena A
    Retinomorphic chips may improve their spike-coding efficiency by emulating the primate retina's parallel pathways. To model the four predominant ganglion-cell types in the cat retina, I morphed outer and inner retina microcircuits into a silicon chip, Visio1. It has 104 x 96 photoreceptors, 4 x 52 x 48 ganglion-cells, a die size of 9.25 x 9.67 mm2 in 1.2 µm 5V CMOS, and consumes 11.5 mW at 5 spikes/second/ganglion-cell. Visio1 includes novel subthreshold current-mode circuits that model horizontal-cell autofeedback, to decouple spatial filtering from local gain control, and model amacrine-cell loop-gain modulation, to adapt temporal filtering to motion. Different ganglion cells respond to motion in a quadrature sequence, making it possible to detect edges of one contrast or the other moving in one direction or the other. I present results from a multichip 2-D motion system, which implements Watson and Ahumada's model of human visual-motion sensing.
  • Publication
    A burst-mode word-serial address-event link--II: receiver design
    (2004-07-01) Boahen, Kwabena A
    We present a receiver for a scalable multiple-access inter-chip link that communicates binary activity between two-dimensional arrays fabricated in deep submicron CMOS. Recipients are identified by row and column addresses but these addresses are not communicated simultaneously. The row address is followed sequentially by a column address for each active cell in that row; this cuts pad count in half without sacrificing communication capacity. Column addresses are decoded as they are received but cells are not written individually. An entire burst is written to a row in parallel; this increases communication capacity with integration density. Rows are written one by one but bursts are not processed one at a time. The next burst is decoded while the last one is being written; this increases capacity further. We synthesized an asynchronous implementation by performing a series of program decompositions, starting from a high-level description. Links using this design have been implemented successfully in three generations of submicron CMOS technology.
  • Publication
    An orientation selective 2D AER transceiver
    (2003-05-25) Choi, Thomas Yu Wing; Shi, Bertram E.; Boahen, Kwabena A
    This paper describes an address event representation (AER) transceiver chip that accepts 2D images and produces 2D output images equal to the input filtered by even and odd symmetric orientation selective spatial filters. Both input and output are encoded as spike trains using a differential ON/OFF representation, conserving energy and AER bandwidth. The spatial filtering is performed by symmetric analog circuits that operate on input currents obtained by integrating the input spike trains, and which preserve the ON/OFF representation. This chip is a key component of a multi-chip system we are constructing that is inspired by the visual cortex. We present measured results from a 32 x 64 pixel prototype, which was fabricated in the TSMC0.25 μm process on a 3.84mm by 2.54mm die. Quiescent power dissipation was 3mW.
  • Publication
    A recurrent model of orientation maps with simple and complex cells
    (2003-12-09) Merolla, Paul; Boahen, Kwabena A
    We describe a neuromorphic chip that utilizes transistor heterogeneity, introduced by the fabrication process, to generate orientation maps similar to those imaged in vivo. Our model consists of a recurrent network of excitatory and inhibitory cells in parallel with a push-pull stage. Similar to a previous model the recurrent network displays hotspots of activity that give rise to visual feature maps. Unlike previous work, however, the map for orientation does not depend on the sign of contrast. Instead, sign-independent cells driven by both ON and OFF channels anchor the map, while push-pull interactions give rise to sign-preserving cells. These two groups of orientation-selective cells are similar to complex and simple cells observed in V1.
  • Publication
    Contrast Adaptation in Subthreshold and Spiking Responses of Mammalian Y-Type Retinal Ganglion Cells
    (2005-01-26) Zaghloul, Kareem A; Boahen, Kwabena A; Demb, Jonathan B
    Retinal ganglion cells adapt their responses to the amplitude of fluctuations around the mean light level, or the "contrast." But, in mammalian retina, it is not known whether adaptation arises exclusively at the level of synaptic inputs or whether there is also adaptation in the process of ganglion cell spike generation. Here, we made intracellular recordings from guinea pig Y-type ganglion cells and quantified changes in contrast sensitivity (gain) using a linear-nonlinear analysis. This analysis allowed us to measure adaptation in the presence of nonlinearities, such as the spike threshold, and to compare adaptation in subthreshold and spiking responses. At high contrast (0.30), relative to low contrast (0.10), gain reduced to 0.82 ± 0.016 (mean ± SEM) for the subthreshold response and to 0.61 ± 0.011 for the spiking response. Thus, there was an apparent reduction in gain between the subthreshold and spiking response of 0.74 ± 0.013. Control experiments suggested that the above effects could not be explained by an artifact of the intracellular recording conditions: extracellular recordings showed a gain change of 0.58 ± 0.022. For intracellular recordings, negative current reduced the spike output but did not affect the gain change in the subthreshold response: 0.80 ± 0.051. Thus, adaptation in the subthreshold response did not require spike-dependent conductances. We conclude that the contrast-dependent gain change in the spiking response can be explained by both a synaptic mechanism, as reflected by responses in the subthreshold potential, and an intrinsic mechanism in the ganglion cell related to spike generation.
  • Publication
    Optic Nerve Signals in a Neuromorphic Chip I: Outer and Inner Retina Models
    (2004-04-01) Zaghloul, Kareem A.; Boahen, Kwabena A
    We present a novel model for the mammalian retina and analyze its behavior. Our outer retina model performs bandpass spatiotemporal filtering. It is comprised of two reciprocally connected resistive grids that model the cone and horizontal cell syncytia. We show analytically that its sensitivity is proportional to the space-constant-ratio of the two grids while its half-max response is set by the local average intensity. Thus, this outer retina model realizes luminance adaptation. Our inner retina model performs high-pass temporal filtering. It features slow negative feedback whose strength is modulated by a locally computed measure of temporal contrast, modeling two kinds of amacrine cells, one narrow-field, the other wide-field.We show analytically that, when the input is spectrally pure, the corner-frequency tracks the input frequency. But when the input is broadband, the corner frequency is proportional to contrast. Thus, this inner retina model realizes temporal frequency adaptation as well as contrast gain control.We present CMOS circuit designs for our retina model in this paper as well. Experimental measurements from the fabricated chip, and validation of our analytical results, are presented in the companion paper [Zaghloul and Boahen (2004)].
  • Publication
    An ON–OFF Log Domain Circuit That Recreates Adaptive Filtering in the Retina
    (2005-01-01) Zaghloul, Kareem A.; Boahen, Kwabena A
    We introduce a new approach to synthesizing Class AB log-domain filters that satisfy dynamic differential-mode and common-mode constraints simultaneously. Whereas the dynamic differential-mode constraint imposes the desired filtering behavior, the dynamic common-mode constraint solves the zero-dc-gain problem, a shortcoming of previous approaches. Also, we introduce a novel push–pull circuit that serves as a current-splitter; it rectifies a differential signal into the ON and OFF paths in our log-domain filter. As an example, we synthesize a first-order low-pass filter, and, to demonstrate the rejection of dc signals, we implement an adaptive filter by placing this low-pass circuit in a variable-gain negative-feedback path. Feedback gain is controlled by signal energy, which is extracted simply by summing complementary ON and OFF signals—dc signals do not contribute to the signal energy nor are they amplified by the feedback. We implement this adaptive filter design in a silicon chip that draws biological inspiration from visual processing in the mammalian retina. It may also be useful in other applications that require dynamic time-constant adaptation.
  • Publication
    Competitively coupled orientation selective cellular neural networks
    (2002-03-01) Shi, Bertram E.; Boahen, Kwabena A
    We extend previous work in orientation selective cellular neural networks to include competitive couplings between different layers tuned to different orientations and spatial frequencies. The presence of these interactions sharpens the spatial frequency tuning of the filters in two ways, when compared to a similar architecture proposed previously which lacks these interactions. The first is the introduction of nulls in the frequency response. The second is the introduction of constraints on the passbands of the coupled layers. Based on an understanding of these two effects, we propose a method for choosing spatial frequency tunings of the individual layers to enhance orientation selectivity in the coupled system.
  • Publication
    A linear cochlear model with active bi-directional coupling
    (2003-09-17) Wen, Bo; Boahen, Kwabena A
    We present a linear active cochlear model that includes the outer hair cell (OHC) forces, which are delivered onto upstream and downstream basilar membrane (BM) segments through Deiters' cells (DCs) and their phalangeal processes (PhPs). Due to the longitudinal tilt of the OHC towards the base and the oblique orientation of the PhP towards the apex, each BM segment receives both feed-forward and feed-backward OHC forces. Transverse BM fibers are actively coupled longitudinally through these bi-directional OHC forces, included in a cochlear model for the first time. We present simulation results that demonstrate large amplification and sharp tuning, and we analyze the underlying mechanism.