Boahen, Kwabena A
Email Address
ORCID
Disciplines
relationships.isProjectOf
relationships.isOrgUnitOf
Position
Introduction
Research Interests
Collection
25 results
Search Results
Now showing 1 - 10 of 25
Publication A burst-mode word-serial address-event link--III: analysis and test results(2004-07-01) Boahen, Kwabena AWe present results for a scalable multiple-access inter-chip link that communicates binary activity between two-dimensional arrays fabricated in deep submicrometer CMOS. Capacity scales with integration density because an entire row is read and written in parallel. Row activity is encoded in a burst: The row address followed by a column address for each active cell. We predict the distribution of burst lengths when transmission is initiated by active cells and access is arbitered using a two-level queuing model. Agreement with the experiment is excellent for loads over 50% but not for lighter loads, where our assumption that service time is exponentially distributed breaks down. We also quantify the throughput–latency tradeoff. The price of an n-fold increase in throughput is an n per Ncol timing error in a cell’s inter-event interval, where Ncol is the number of cells per row. Links implemented in 0.6, 0.4, and 0.25 micrometer are compared; the highest burst-rate achieved was 27.8 M events/s.Publication A linear cochlear model with active bi-directional coupling(2003-09-17) Wen, Bo; Boahen, Kwabena AWe present a linear active cochlear model that includes the outer hair cell (OHC) forces, which are delivered onto upstream and downstream basilar membrane (BM) segments through Deiters' cells (DCs) and their phalangeal processes (PhPs). Due to the longitudinal tilt of the OHC towards the base and the oblique orientation of the PhP towards the apex, each BM segment receives both feed-forward and feed-backward OHC forces. Transverse BM fibers are actively coupled longitudinally through these bi-directional OHC forces, included in a cochlear model for the first time. We present simulation results that demonstrate large amplification and sharp tuning, and we analyze the underlying mechanism.Publication A silicon implementation of the thalamic low threshold calcium current(2003-09-17) Hynna, Kai M.; Boahen, Kwabena AA silicon model of the thalamic low threshold calcium current is presented. The channel current (IT) is the product of an activation and inactivation current, normalized by their sum. The individual currents are modeled by a simple current-mirror integrator circuit. A modified differential pair controls the threshold of activation while a leak transistor added to the inactivation mirror controls the rate of inactivation and deinactivation. The dynamics of IT are the result of the interaction between the fast activation and slow inactivation currents. By adjusting the base level of the activation current, we can realize a hyperpolarization activated cation current (Ih), responsible for rhythmic bursting in thalamic cells. By attaching the circuit to a constant leak integrate-and-fire neuron, we demonstrate in silicon both burst and tonic firing modes.Publication Thermodynamically Equivalent Silicon Models of Voltage-Dependent Ion Channels(2007-01-01) Hynna, Kai M; Boahen, Kwabena AWe model ion channels in silicon by exploiting similarities between the thermodynamic principles that govern ion channels and those that govern transistors. Using just eight transistors, we replicate—for the first time in silicon—the sigmoidal voltage dependence of activation (or inactivation) and the bell-shaped voltage-dependence of its time constant. We derive equations describing the dynamics of our silicon analog and explore its flexibility by varying various parameters. In addition, we validate the design by implementing a channel with a single activation variable. The design’s compactness allows tens of thousands of copies to be built on a single chip, facilitating the study of biologically realistic models of neural computation at the network level in silicon.Publication Optic Nerve Signals in a Neuromorphic Chip II: Testing and Results(2004-04-01) Zaghloul, Kareem A.; Boahen, Kwabena ASeeking to match the brain’s computational efficiency [14], we draw inspiration from its neural circuits. To model the four main output (ganglion) cell types found in the retina, we morphed outer and inner retina circuits into a 96 x 60-photoreceptor, 3.5 x 3.3 mm2, 0.35 μm-CMOS chip. Our retinomorphic chip produces spike trains for 3600 ganglion cells (GCs), and consumes 62.7 mW at 45 spikes/s/GC. This chip, which is the first silicon retina to successfully model inner retina circuitry, approaches the spatial density of the retina. We present experimental measurements showing that the chip’s subthreshold current-mode circuits realize luminance adaptation, bandpass spatiotemporal filtering, temporal adaptation and contrast gain control. The four different GC outputs produced by our chip encode light onset or offset in a sustained or transient fashion, producing a quadrature-like representation. The retinomorphic chip’s circuit design is described in a companion paper [Zaghloul and Boahen (2004)].Publication On-off differential current-mode circuits for Gabor-type spatial filtering(2002-05-26) Shi, Bertram E.; Choi, Thomas Yu Wing; Boahen, Kwabena AWe describe a current-mode circuit for Gabor-type image filtering which uses a differential representation where positive (on) and negative (off) signals are encoded using separate channels. Previous current-mode implementations represented positive and negative signals as variations around a constant bias at every pixel. However, this bias current has several disadvantages. First, variations in it introduce significant additive fixed pattern noise to the output. Second, it dissipates power even with zero input. Third, if the output is encoded using the Address Event Representation, the bias current sets up a quiescent firing rate which loads the bus. The architecture proposed here alleviates these problems since a zero signal is encoded as nearly zero current in both channels. On the other hand, the transistor count and the address space are doubled. Measurements from a 1 by 25 pixel array with a cell size of 64 μm by 540 μm was fabricated in the AMI 1.5 μm process available through MOSIS. Quiescent power dissipation was 5 μW total.Publication Contrast Adaptation in Subthreshold and Spiking Responses of Mammalian Y-Type Retinal Ganglion Cells(2005-01-26) Zaghloul, Kareem A; Boahen, Kwabena A; Demb, Jonathan BRetinal ganglion cells adapt their responses to the amplitude of fluctuations around the mean light level, or the "contrast." But, in mammalian retina, it is not known whether adaptation arises exclusively at the level of synaptic inputs or whether there is also adaptation in the process of ganglion cell spike generation. Here, we made intracellular recordings from guinea pig Y-type ganglion cells and quantified changes in contrast sensitivity (gain) using a linear-nonlinear analysis. This analysis allowed us to measure adaptation in the presence of nonlinearities, such as the spike threshold, and to compare adaptation in subthreshold and spiking responses. At high contrast (0.30), relative to low contrast (0.10), gain reduced to 0.82 ± 0.016 (mean ± SEM) for the subthreshold response and to 0.61 ± 0.011 for the spiking response. Thus, there was an apparent reduction in gain between the subthreshold and spiking response of 0.74 ± 0.013. Control experiments suggested that the above effects could not be explained by an artifact of the intracellular recording conditions: extracellular recordings showed a gain change of 0.58 ± 0.022. For intracellular recordings, negative current reduced the spike output but did not affect the gain change in the subthreshold response: 0.80 ± 0.051. Thus, adaptation in the subthreshold response did not require spike-dependent conductances. We conclude that the contrast-dependent gain change in the spiking response can be explained by both a synaptic mechanism, as reflected by responses in the subthreshold potential, and an intrinsic mechanism in the ganglion cell related to spike generation.Publication A recurrent model of orientation maps with simple and complex cells(2003-12-09) Merolla, Paul; Boahen, Kwabena AWe describe a neuromorphic chip that utilizes transistor heterogeneity, introduced by the fabrication process, to generate orientation maps similar to those imaged in vivo. Our model consists of a recurrent network of excitatory and inhibitory cells in parallel with a push-pull stage. Similar to a previous model the recurrent network displays hotspots of activity that give rise to visual feature maps. Unlike previous work, however, the map for orientation does not depend on the sign of contrast. Instead, sign-independent cells driven by both ON and OFF channels anchor the map, while push-pull interactions give rise to sign-preserving cells. These two groups of orientation-selective cells are similar to complex and simple cells observed in V1.Publication A biomorphic digital image sensor(2003-02-01) Culurciello, Eugenio; Etienne-Cummings, Ralph; Boahen, Kwabena AAn arbitrated address-event imager has been designed and fabricated in a 0.6-μm CMOS process. The imager is composed of 80 x 60 pixels of 32 x 30 μm. The value of the light intensity collected by each photosensitive element is inversely proportional to the pixel’s interspike time interval. The readout of each spike is initiated by the individual pixel; therefore, the available output bandwidth is allocated according to pixel output demand. This encoding of light intensities favors brighter pixels, equalizes the number of integrated photons across light intensity, and minimizes power consumption. Tests conducted on the imager showed a large output dynamic range of 180 dB (under bright local illumination) for an individual pixel. The array, on the other hand, produced a dynamic range of 120 dB (under uniform bright illumination and when no lower bound was placed on the update rate per pixel). The dynamic range is 48.9 dB value at 30-pixel updates/s. Power consumption is 3.4 mW in uniform indoor light and a mean event rate of 200 kHz, which updates each pixel 41.6 times per second. The imager is capable of updating each pixel 8.3K times per second (under bright local illumination).Publication An ON-OFF orientation selective address event representation image transceiver chip(2004-02-01) Choi, Thomas Yu Wing; Shi, Bertram E.; Boahen, Kwabena AThis paper describes the electronic implementation of a four-layer cellular neural network architecture implementing two components of a functional model of neurons in the visual cortex: linear orientation selective filtering and half wave rectification. Separate ON and OFF layers represent the positive and negative outputs of two-phase quadrature Gabor-type filters, whose orientation and spatial-frequency tunings are electronically adjustable. To enable the construction of a multichip network to extract different orientations in parallel, the chip includes an address event representation (AER) transceiver that accepts and produces two-dimensional images that are rate encoded as spike trains. It also includes routing circuitry that facilitates point-to-point signal fan in and fan out. We present measured results from a 32 x 64 pixel prototype, which was fabricated in the TSMC0.25-μm process on a 3.84 by 2.54 mm die. Quiescent power dissipation is 3 mW and is determined primarily by the spike activity on the AER bus. Settling times are on the order of a few milliseconds. In comparison with a two-layer network implementing the same filters, this network results in a more symmetric circuit design with lower quiescent power dissipation, albeit at the expense of twice as many transistors.

